

COMMERCIAL SPLIT CONDENSING UNIT

FORM NO. ATZ-206 REV. 1 Supersedes Form No. ATZ-206

TZAA- HIGH EFFICIENCY SERIES NOMINAL SIZE 10 TON [35.2 kW]

This product is shipped with a nitrogen holding charge that must be vented prior to evacuation and charging and is identified by a tag on the unit shipping carton and on one of the unit service valves.

This product is only intended for Commercial Condensing Unit change-out in existing R-22 systems with a matched indoor unit.

This product must be charged with R-22 refrigerant meeting AHRI 700 purity standard.

TABLE OF CONTENTS

Unit Features & Benefits	3-4
Model Number Designation	5
Selection Procedure	6
Unit Dimensions	7
Performance Data	8
Electrical Data	9
Cooling Performance Data	10
Typical Installation	11-13
Accessories	14
Wiring Schematic	15
Sequence of Operation	16
Sample Specifications	16
Limited Warranty	20

UNIT FEATURES & BENEFITS—TZAA- SERIES

These quality features are included in the Thermal Zone[®] Package Air Conditioner

STANDARD FEATURES INCLUDE:

- **CABINET**—Galvanized steel with a durable powder paint finish. Stamped louvered panels offer 100% protection for the condenser coil.
- COMPRESSOR The Scroll Compressor is hermetically sealed with internal overload protection and durable insulation on motor windings. The entire compressor is mounted on rubber grommets to reduce vibration and noise.
- CONDENSER COIL—Constructed with copper tubes and aluminum fins mechanically bonded to the tubes for maximum heat transfer capabilities.
- BASE PAN-Galvanized steel with powder paint finish.
- REFRIGERANT CONNECTIONS—Field piping connections are made through a fixed panel. This allows removal of access panels after piping connections have been made.
- **CRANKCASE HEATERS**—Standard, all models. Prevents refrigerant migration to compressor(s).
- LOW AMBIENT CONTROL—A pressure sensitive fan cycling control to allow unit operation down to 0°F [-17.8°C] is standard.
- SERVICE VALVES—Standard on liquid and suction lines. Allows outdoor section to be isolated from indoor coil.
- SERVICE ACCESS—Control box as well as the compressor and other refrigerant controls are accessible through access panels. Control box may be open without affecting the normal operation of the unit. Condenser fan motors are accessible by removing wire grilles.

- FILTER DRIER—Standard (uninstalled) on all models. Helps ensure refrigerant cleanliness.
- **TRANSFORMER**—Step-down type, line to 24 volts. Provides control circuit voltage.
- CONTACTOR—The contactor is an electrical switch which operates the compressor and condenser fans.
- HIGH PRESSURE CONTROL—Opens the contactor circuit on high refrigerant pressure; manual reset.
- LOW PRESSURE CONTROL—Stops compressor operation in the event of loss of refrigerant.
- **CONDENSER FAN MOTOR** (Direct Drive)—Ball bearing 1075 RPM motors are mounted to minimize vibration and noise problems. These are permanent split capacitor types.
- **TESTING**—All units are run tested at the factory prior to shipment. Units are shipped with a holding charge of nitrogen.
- EXTERNAL GAUGE PORTS—Allows pressures to be checked without removing access panel.
- COIL LOUVERS—Helps prevent damage to outdoor coils.
- TIME DELAY—Supplied on tandem compressor models to provide a delay between stages.
- EQUIPMENT GROUND—Lug for field connection of ground wire.
- [] Designates Metric Conversions

UNIT FEATURES & BENEFITS—TZAA- SERIES

10 TON [35.2 kW] MODEL

MODEL IDENTIFICATION—TZAA- SERIES

SELECTION PROCEDURE— MATCHED SYSTEMS

Example 1: Determine the Net System Performance of Condensing Unit TZAA-120 with TZHGG-120 at 3825 CFM [1805 L/s] at .30" external static pressure [.07 kPa], 80°F [26.7°C] DB/67°F [19.4°C] WB entering indoor air and 95°F [35.0°C] DB outdoor ambient.

From Cooling Performance Data, Condensing Unit TZAA-120 with Air Handler TZHGG-120 Total Cap. (gross) = 120.0 x 1000 = 120,000 BTUH [35.17 kW]

Sens. Cap. (gross) = $90.5 \times 1000 = 90,500 \text{ BTUH } [26.52 \text{ kW}]$ Power (gross) = $8.8 \times 1000 = 8,800 \text{ WATTS}$

From Commercial Air Handler Form Airflow Performance Data.

Power = 1,455 WATTS (K-Drive, 2 turns open)

= 1,455 x 3,412 = 4,964 BTUH [1.4 kW]

Therefore, the Net Performance is:

Total Cap. (net) = 120,000 - 4,964 = 115,036 BTUH [33.71 kW] Sens. Cap (net) = 90,500 - 4,964 = 85,536 BTUH [25.07 kW] Power (net) = 8,800 + 1,455 = 10,255 WATTS EER = 115,036 ÷ 10,255 = 11.22 BTUH/WATT [3.29 w/w]

Example 2: Determine the Sensible Net Capacity at 75°F [23.9°C] DB entering indoor air with the other conditions from Example 1 being the same.

From Cooling Performance Data, Condensing Unit TZAA-120 with Air Handler TZHGG-120 Sens. Cap (net) = 85,536 BTUH [25.07 kW] (from Example 1)

Adjust Capacity for temperature other than 80°F [26.7°C] entering air:

adjustment: [1.10 x 3,800 x (1-.16) x (75-80]) = - 17,556 BTUH [5.14 kW]

Therefore, Sensible Capacity (net) at 75°F [23.9°C] entering air is:

85,536 - 17,556 = 67,980 BTUH [19.92 kW] (Sensible)

UNIT DIMENSIONS—TZAA- SERIES

UNIT DIMENSIONS AND WEIGHTS

MODEL	TOTAL WEIGHT		Corner Weig	hts, Lbs. [kg]	
MODEL	LBS. [kg]	Α	В	С	D
TZAA-120	501 [227]	123 [56]	132 [60]	119 [54]	127 [58]

10 TON [35.2 kW]

BOTTOM VIEW

CONTROL ACCESS SIDE VIEW

PERFORMANCE DATA @ AHRI STANDARD CONDITIONS—COOLING: TZAA-

MODEL NUMBERS		80°F [26.5°C] DB/67°F [19.5°C] WB INDOOR AIR 95°F [35°C] DB OUTDOOR AIR			SOUND	INDOOR	
OUTDOOR UNIT TZAA-	INDOOR COIL AND/OR AIR HANDLER	TOTAL CAPACITY BTU/H [kW]	NET SENSIBLE BTU/H [kW]	NET LATENT BTU/H [kW]	EER	RATING dB	CFM [L/s]
120CA757	TZHGG-120CA757	115,000 [33.7]	85,500 [25.1]	29,500 [8.6]	11.2	88	3,825 [1793]
120DA757	TZHGG-120DA757	115,000 [33.7]	85,500 [25.1]	29,500 [8.6]	11.2	88	3,825 [1793]

ELECTRICAL & PHYSICAL DATA: TZAA-

	Weight		Ship	Lbs. [kg]	541 [245.4]	541 [245.4]
			Net	Lbs. [kg]	501 [227.3]	501 [227.3]
HYSICAL	Dofria Dor	Circuit 07 [a]			316 [8958]	316 [8958]
PI	_				8000 [3775]	8000 [3775]
	utdoor Coi		No.	Rows	2	2
	10		Face Area	Sq. Ft. [Sq. m]	27.00 [2.51]	27.00 [2.51]
	Fuse or HACR Circuit Breaker		Maximum	Amperes	09/09	35
			Minimum	Amperes	20/20	30
	Minimum Circuit Ampacity Amperes				43/43	23
TRICAL	Full Load Amperes (FLA)		Fan	Motor	4.8	2.8
ELEC	pressor	Locked Rotor	Amperes	(LRA)	225	114
	Com	Rated Load	Amperes	(RLA)	30.1/30.1	15.5
	Phase Frequency (Hz)		Voltage (Volts)		3-60-208/230	3-60-460
Model No. TZAA-				120CA757	120DA757	

[] Designates Metric Conversions

ELECTRICAL DATA-TZAA- SERIES

COOLING PERFORMANCE DATA

CONDENSING TZAA-120

COOLING TZHGG-120

ENTERING INDOOR AIR @ 80°F [26.7°C] dbE ①						
63°F [17.2°C]						
3060 [1444]						
0.14						
7] 116.9 [34.3] 7] 86.0 [25.2] 7.1						
i] 115.0 [33.7] i] 87.1 [25.5] 7.4						
i] 113.0 [33.1] i] 87.9 [25.8] 7.7						
'] 110.8 [32.5] '] 88.0 [25.8] 8.1						
i] 108.4 [31.8] i] 87.7 [25.7] 8.5						
?] 105.9 [31.0] ?] 86.8 [25.4] 9.0						
i 103.2 [30.2] i 85.4 [25.0] 9.4						
[] 100.3 [29.4] [] 83.4 [24.4] 9.9						
i] 97.3 [28.5] 2] 81.0 [23.7] 10.5						
3.0 3.5 2.2 3.2 1.4 3.7 0.5 3.1 3.6 7.2						

DR —Depression ratio dbE —Entering air dry bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power—KW input

wbE-Entering air wet bulb

NOTES:

When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].
Data includes 25 feet [7.62 m] of recommended suction/liquid lines.

TYPICAL INSTALLATIONS—TZAA- SERIES

RIGGING **ROOFTOP INSTALLATION**

If rooftop installation is required, make certain that the building construction is adequate for the weight of the unit. (Refer to physical data chart.) Before placing the unit on the roof, make certain that the nylon rigging slings are of sufficient length to maintain equilibrium of the unit when lifting. Under no circumstances should the unit be lifted by only one corner for rooftop installation.

Illustration ST-A0890-17

GENERAL INSTALLATION

The condensing unit should be installed outdoors. It should be located as near as possible to the evaporator section to keep connecting refrigerant tubing lengths to a minimum. The unit must be installed to allow a free air flow to the condenser coils.

If several units are installed adjacent to each other, care must be taken to avoid recirculation of air from one condenser to another. In all installations, adequate space must be provided for installation and servicing.

CLEARANCES

SLAB INSTALLATION

Condensing units should be set on a solid level foundation. When installed at ground level, the unit should be placed on a cement slab. If the pad is formed at the installation site, do not pour the pad tight against the structure, otherwise vibration will be transmitted from the unit through the pad.

The unit must not be connected to any duct work. Do not locate unit under a roof drip; if necessary, install gutters, etc., to prevent water run-off from hitting the unit. To prevent air recirculation, it is recommended that the unit not be installed under an overhang, but if necessary allow a minimum of 60 inches [1524 mm] above the unit for air discharge.

TYPICAL REFRIGERANT PIPING RECOMMENDATIONS

General Notes:

- 1. Vertical risers not to exceed 60 feet [18.29 mm].
- 2. Locate the condensing unit and evaporator(s) as close together as possible to minimize piping runs.
- 3. Condensing units are shipped with a nitrogen holding charge. Evacuate condensing unit before charging with refrigerant.

EQUIVALENT LENGTH (FT.) [m] OF STRAIGHT TYPE "L" TUBING FOR NON-FERROUS VALVES AND FITTINGS (BRAZED)						
TUBE SIZE (IN.) [mm] 0.D.	SOLENOID VALVE	ANGLE Valve	SHORT Radius Ell	LONG Radius Ell	TEE Line Flow	TEE Branch Flow
			LIQUID LINE			
1/2 [12.7]	70 [21.3]	24 [7.3]	4.3 [1.4]	3.2 [1.0]	1.7 [0.5]	6.6 [2.0]
5/8 [15.9]	72 [22.0]	25 [7.6]	5.7 [1.7]	3.9 [1.2]	2.3 [0.7]	8.2 [2.5]
³ /4 [19.1]	75 [22.9]	25 [7.6]	6.5 [2.0]	4.5 [1.4]	2.9 [0.9]	9.7 [3.0]
7/8 [22.2]	78 [23.8]	28 [8.5]	7.8 [2.4]	5.3 [1.6]	3.7 [1.1]	12.0 [3.7]
			SUCTION LIN	E		
11/8 [28.6]	87 [26.5]	29 [8.8]	2.7 [0.8]	1.9 [0.6]	5.2 [1.6]	8.0 [2.4]
13/8 [34.9]	102 [31.1]	33 [10.1]	3.2 [1.0]	2.2 [0.7]	6.9 [2.1]	10.0 [3.1]
15/8 [41.3]	115 [35.1]	34 [10.4]	3.8 [1.2]	2.6 [0.8]	8.7 [2.7]	12.0 [3.7]
21/8 [54.0]	141 [43.0]	39 [11.9]	5.2 [1.6]	3.4 [1.0]	12.0 [3.7]	16.0 [4.9]

LIQUID LINE PRESSURE DROP PER 100 FEET [30.48 m] EQUIVALENT LENGTH (TYPE L COPPER TUBING)

NOTES:

- When evaporator coil is above condenser, the pressure drop due to vertical lift (.5 PSIG per foot of lift) [1.05 kPa per meter] must be added to the pressure drop derived from this curve.
- Size liquid line for **no more** than 10°F [5.6°C] loss (approximately 50 PSIG [206.8 kPa] total pressure drop).
- Do not oversize liquid line. Oversized liquid lines add significantly to the amount of refrigerant required to charge the system.
- The maximum recommended velocity with solenoid valves or other quick closing devices in the liquid line is 300 FPM [1.5 m/s].
- [] Designates Metric Conversions

RECOMMENDED VAPOR AND LIQUID LINE Sizes to various length of run						
EQUIVALENT LENGTH TO	LIQUID LINE O.D. (IN.) [mm]		VAPOR LINE O.D. (IN.) [mm]			
EVAPORATOR	COOLING MODEL		COOLING MODEL			
(FT.) [m]	120	125	120	125		
1-15 [1-4.57]	5/8 [15.9]	5/8 [15.9]	13/8 [34.9]	1 ³ /8 [34.9]		
16-50 [4.88-15.24]	5/8 [15.9]	5/8 [15.9]	13/8 [34.9]	1 ³ /8 [34.9]		
51-100 [15.54-30.48]	5/8 [15.9]	5/8 [15.9]	13/8 [34.9]	13/8 [34.9]		
101-150 [30.78-45.72]	5/8 [15.9]	5/8 [15.9]	15/8 [41.3]	15/8 [41.3]		

NOTE: Runs between condenser and evaporator not to exceed an equivalent length greater than 150 [45.7 m] feet.

VAPOR LINE SYSTEM CAPACITY LOSS IN PERCENT PER 100 FEET [30.48 m] EQUIVALENT LENGTH (TYPE L COPPER TUBING)

NOTES:

1) The minimum velocity line (700 fpm) [3.6 m/s] is recommended.

- 2) For vapor pressure drop (PSIG) [6.9 kPa], multiply percent (%) loss by 1.18.
- Size vapor lines for no more than 2°F [1.1°C] loss which corresponds to approximately 3 PSIG [20.7 kPa] pressure drop.
- Pitch all horizontal vapor lines downward in the direction of flow (1/2" [12.7 mm] to10' [3.0 m] run).

WARNING

Do not use oxygen to purge lines or pressure system for leak test. Oxygen reacts violently with oil, which can cause an explosion resulting in severe personal injury or death.

TYPICAL REFRIGERANT PIPING RECOMMENDATIONS (cont.)

REQUIRED OZS. [g] R22 CHARGE PER FT. [m] OF TUBING

TUBE SIZE O.D. (IN.) [mm]	LIQUID (OZ.) [g]	VAPOR (OZ.) [g]
1/2 [12.7]	1.20 [34.0]	
⁵ /8 [15.9]	1.86 [52.7]	
7/8 [22.2]	2.67 [75.7]	0.06 [1.7]
11/8 [28.6]		0.15 [4.3]
1 ³ /8 [34.9]		0.22 [6.2]
15/8 [41.3]		0.29 [8.2]
21/8 [54.0]		0.43 [12.2]

Quantities based on 110°F liquid and 45°F vapor.

BASIC SYSTEM CHARGE*

		TZAA-12	207	57	
		316 c)Z.		
[8958 g]					

*System with 0 feet [m] of tubing.

ACCESSORIES—TZAA- SERIES

CONDENSING UNIT ACCESSORIES

ACCESSORY DESCRIPTION	MODEL NUMBER	SIZES USED ON
Sight Glass	RXAG-A048	122
Liquid Line Solenoid Valve*	RXAV-CD120	122

*Cannot be used as a pump down solenoid.

WIRING SCHEMATICS—TZAA- SERIES

TYPICAL WIRING SCHEMATIC—TZAA-120 10 TON [35.2 kW]

SEQUENCE OF OPERATION TZAA-120, Single Stage

- When the room thermostat is set on "Cool", "Fan Auto", and the temperature is higher than the thermostat setting, the thermostat "Y1" circuit closes and energizes the compressor contactor (CC) through the closed contacts of the high pressure and low pressure controls. Power to the crankcase heater (CCH) will be de-energized by the auxiliary contacts (AUX-1)
- 2. Simultaneously, the "G" circuit provides power to the indoor blower motor circuit and starts indoor air circulation through the evaporator coil.
- 3. When the discharge pressure increases to 275 psig, the contacts on the low ambient control (LAC) will allow supply power to start the outdoor fan motors (ODF) which begin to pull air through the condenser coils.
- 4. The system will continue cooling operation, as long as the room thermostat "Y1" circuit and all safety device contacts are closed. The low ambient control (LAC) will open and close, allowing the outdoor fans to maintain discharge pressure between 150 and 275 psig.
- 5. When the thermostat is satisfied, the "Y1" circuit will open and de-energize the compressor contactor (CC), stopping compressor operation and closing the auxiliary contacts (AUX-1), which energizes the crankcase heater (CCH).
- 6. The thermostat "G" circuit will stop blower operation.

SAMPLE SPECIFICATIONS

Furnish and install as shown on the drawing Thermal Zone[®] Model ______ air cooled condensing unit suitable for outdoor application.

COMPRESSOR—Unit shall have scroll compressor(s). It shall be externally mounted on rubber grommets to reduce vibration transmission and noise to surrounding area. Maximum power input shall not be more than ______ at conditions specified.

LOW AMBIENT CONTROL—All units shall have standard head pressure controls that cycle the condenser fan motors to maintain condensing pressures for operation down to 0°F [–17.8°C] ambient.

CAPACITY—Capacity shall be _____ BTU/H when operating at _____ °F [°C] saturated suction temperature.

MOTORS & FANS—Each unit shall have 1075 RPM sleeve bearing, permanently lubricated motor(s) fixed with direct-drive, dual bladed fan(s). Motor(s) shall be equipped with inherent overload protection. Motor(s) & fan(s) shall be mounted on top panel for easy access. Condenser air shall discharge vertically.

COILS—Coils shall be fabricated of ³/8" [9.53 mm] O.D. seamless copper tubing and aluminum fins with die-formed collars mechanically bonded to tubes arranged in a staggered pattern. All coils shall be submitted to a pressure test after fabrication and dehydrated. Units shall be shipped with a dry nitrogen holding charge. Airflow shall be drawn through design providing uniform air distribution across the coil surface. **CASINGS**—Casings shall make unit suitable for outdoor installation. Casing, base pan and framework shall be manufactured of galvanized sheet metal subjected to multistage cleaning, primed, and finished with a durable powder coat paint, capable of withstanding a 1000-HR salt spray test per ASTM B 117. Units shall have stamped louver panels offering 100% protection of the condenser coil. Openings shall be provided for power. Dimensions of entire assembly shall be not more than _____ inches [mm] high, _____ inches [mm] long and _____ inches [mm] wide.

REFRIGERATION CIRCUIT—Shall include the compressor, the condenser coils, all internal refrigerant piping and liquid and suction line service valves. Refrigerant stubs shall be extended through the cabinet for external field connection without affecting accessibility to compressor compartment.

CONTROL PANEL—The panel shall be designed for single power source to the compressor and fan motor(s) and shall include fan cycling control, and compressor contactor.

SAFETY CONTROLS—Manual reset high pressure and automatic reset low pressure control shall be provided.

FACTORY TESTING - All units shall be test run at the factory.

NOTES

NOTES

NOTES

GENERAL TERMS OF LIMITED WARRANTY*

Thermal Zone[®] will furnish a replacement for any part of this product which fails in normal use and service within the applicable periods stated, in accordance with the terms of the limited warranty.

Compressor	Five (5) Years
Any Other Part	One (1) Year
*For Complete Details of the Limited Warra and Conditions, See Your Local Installer o a Copy.	nty, Including Applicable Terms or Contact the Manufacturer for

Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and Local codes, regulations, and practices.

"In keeping with its policy of continuous progress and product improvement, the right is reserved to make changes without notice."
PRINTED IN U.S.A. 6-12 QG
FORM NO. ATZ-206 REV. 1
Supersedes Form No. ATZ-206